n^2=16+10n

Simple and best practice solution for n^2=16+10n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n^2=16+10n equation:



n^2=16+10n
We move all terms to the left:
n^2-(16+10n)=0
We add all the numbers together, and all the variables
n^2-(10n+16)=0
We get rid of parentheses
n^2-10n-16=0
a = 1; b = -10; c = -16;
Δ = b2-4ac
Δ = -102-4·1·(-16)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{41}}{2*1}=\frac{10-2\sqrt{41}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{41}}{2*1}=\frac{10+2\sqrt{41}}{2} $

See similar equations:

| 4p+2p=14 | | k+6=11 | | 52=-17x+1 | | 2(2x+4)=3x+x=8 | | 2n-2=4+7n-4n | | 46+4p+19=9p-5 | | 4y+61+43=180 | | z/2+5=1 | | 4n+4=5n-3 | | 2(6+x)= | | 0=-5t^2+40t+9 | | –11=–(j−–7) | | (-6-i)(-6+i)=0 | | X+10x+x=24 | | 8u=15+5u | | 2y+94+44=180 | | -7m-2m=6-3m | | z/6+8=5 | | (4x+7)(x^2+4x-5)=0 | | 7x-9=7x=9 | | −7=z2+1 | | (-6-i)(-6+i)=37 | | -2(v+1)=2v-4+3(2v+2) | | 55-4x=-10-9x | | -7z-8z+12=3(5z-4) | | -7y+5(y+4)=8 | | -2(v+1)=2v-4+3(2v+2 | | 2n+7(-3-6n)=179 | | 9x+7x-42=15x-30 | | 5w-33=117 | | x6+8=5 | | –5(2t+10)=–2t−2 |

Equations solver categories